9340 Series

Precision DecadeResistanceStandards

9340 Series Features

- Widest Available Resistance Range From $10 \mathrm{~m} \Omega$ to $10 \mathrm{~T} \Omega$
- Lowest Available Temperature Coefficients (As low as $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ down to 0.01Ω)
- Lowest Available Power Coefficients
- 12 Month Stabilities as Low as < 10 ppm (Near Standard Resistor Performance)
- Highest Current Handling Capabilities of Any Decade Standard (7 Amps)
- Smooth Dial Rotation with Stop Position at '10'; Each Dial has an Overlap Position at '10' Enabling Fine Tuning
- Special Values Available On Request
- Five Types Available from 3 Dial to 7 Dial; All Full Scale Resistance Values in the Range Available in All Dial Sizes

Guildline Instruments 9340 Series of precision DC Resistance Standards are a complete family of easy to use resistance standards offering the best combination of highest accuracy and widest range commercially available.
There are 5 standard types available from 3 dial to 7 dial. The smallest increment offered is $10 \mathrm{~m} \Omega$ and the largest full-scale total resistance available is just over $10 \mathrm{~T} \Omega$. All full-scale resistance values in the range are available in all the dial sizes.

Accuracy of the 9340 Decade Resistance Boxes is better than $\pm 0.01 \%$ from mid range of 1Ω to $10 \mathrm{M} \Omega$ Steps. The 0.01 Decade at 1% absolute accuracy equates to only a 100 $\mu \Omega$ total error or 20 times more accurate than just other decade boxes floor specification of $2 \mathrm{~m} \Omega$. Not only are the accuracies much better, other important specifications such as current handling capabilities, long term stability, temperature and power coefficients are also typically 5 X to 10X better than the nearest competition. The 9340 truly set the highest standard for Decade Resistors.

Simply Put - The 9340 Series Are The Most Versatile and Accurate Decade Resistance Standard Available From Anyone Today!

This performance has been achieved by techniques established at Guildline over a quarter of a century in the construction and stabilization of resistors and using low level switching techniques already proven in many of our precision instruments.

The long-term stability is maintained by using classical resistance techniques developed by Guildline, combined with the use of today's finest quality materials. The individual decade switches have multiple contacts made of solid silver, which minimizes contact resistance.

The design minimizes leakage effects by careful shielding and the use of high quality insulation materials. The dials have a smooth rotation from position to position and the switches are stopped at positions ' 10 ' to prevent the operator from accidentally switching directly from ' 10 ' to ' 0 '. This is particularly critical when a decade box forms part of a circuit where there are devices present that cannot have current drawn from them.

Each dial has an overlap ' 10 ' position for fine-tuning a value without the need to reset all dials when passing through a decade point. The panel is clearly marked adjacent to each dial with the resistance per step and the current rating of that dial.
The 9340 provides a modern compact design of high quality construction and high reliability for a modern version of a classical type of resistance decade standard.

9340 Series of Precision ResistanceStandards

Series Specifications

Model Number	\# of Decades	Minimum Step $\left(\Omega^{\prime} ' s\right)$	Maximum Value $\left(\Omega^{\prime} \mathrm{s}\right)$
$9343 / 10$	3	0.01	11.10
$9343 / 100$	3	0.1	111.0
$9343 / 1 \mathrm{k}$	3	1	1.110 k
$9343 / 10 \mathrm{k}$	3	10	11.10 k
$9343 / 100 \mathrm{k}$	3	100	111.0 k
$9343 / 1 \mathrm{M}$	3	1 k	1.110 M
$9343 / 10 \mathrm{M}$	3	10 k	11.10 M
$9343 / 100 \mathrm{M}$	3	100 k	111.0 M
$9343 / 1 \mathrm{G}$	3	1 M	1.110 G
$9343 / 10 \mathrm{G}$	3	10 M	11.10 G
$9343 / 100 \mathrm{G}$	3	100 M	111.0 G
$9343 / 1 \mathrm{~T}$	3	1 G	1.110 T
$9343 / 10 \mathrm{~T}$	3	10 G	11.10 T

Model Number	\# of Decades	Minimum Step $\left(\Omega^{\prime} s\right)$	Maximum Value $(\Omega ' s)$
$9344 / 100$	4	0.01	111.1
$9344 / 1 \mathrm{k}$	4	0.1	1.111 k
$9344 / 10 \mathrm{k}$	4	1	11.11 k
$9344 / 100 \mathrm{k}$	4	10	111.1 k
$9344 / 1 \mathrm{M}$	4	100	1.111 M
$9344 / 10 \mathrm{M}$	4	1 k	11.11 M
$9344 / 100 \mathrm{M}$	4	10 k	111.1 M
$9344 / 1 \mathrm{G}$	4	100 k	1.111 G
$9344 / 10 \mathrm{G}$	4	1 M	11.11 G
$9344 / 100 \mathrm{G}$	4	10 M	111.1 G
$9344 / 1 \mathrm{~T}$	4	100 M	1.111 T
$9344 / 10 \mathrm{~T}$	4	1 G	11.11 T

Model Number	\# of Decades	Minimum Step $\left(\Omega^{\prime} \mathrm{s}\right)$	Maximum Value $\left(\Omega^{\prime} \mathrm{s}\right)$
$9345 / 1 \mathrm{k}$	5	0.01	1.1111 k
$9345 / 10 \mathrm{k}$	5	0.1	11.111 k
$9345 / 100 \mathrm{k}$	5	1	111.11 k
$9345 / 1 \mathrm{M}$	5	10	1.1111 M
$9345 / 10 \mathrm{M}$	5	100	11.111 M
$9345 / 100 \mathrm{M}$	5	1 k	111.11 M
$9345 / 1 \mathrm{G}$	5	10 k	1.1111 G
$9345 / 10 \mathrm{G}$	5	100 k	11.111 G
$9345 / 100 \mathrm{G}$	5	1 M	111.11 G
$9345 / 1 \mathrm{~T}$	5	10 M	1.1111 T
$9345 / 10 \mathrm{~T}$	5	100 M	11.111 T

Model Number	\# of Decades	Minimum Step $(\Omega ' s)$	Maximum Value $(\Omega ' s)$
$9346 / 10 \mathrm{k}$	6	0.01	11.1111 k
$9346 / 100 \mathrm{k}$	6	0.1	111.111 k
$9346 / 1 \mathrm{M}$	6	1	1.11111 M
$9346 / 10 \mathrm{M}$	6	10	11.1111 M
$9346 / 100 \mathrm{M}$	6	100	111.111 M
$9346 / 1 \mathrm{G}$	6	1 k	1.11111 G
$9346 / 10 \mathrm{G}$	6	10 k	11.1111 G
$9346 / 100 \mathrm{G}$	6	100 k	111.111 G
$9346 / 1 \mathrm{~T}$	6	1 M	1.11111 T
$9346 / 10 \mathrm{~T}$	6	10 M	11.1111 T

Model Number	\# of Decade	Minimum Step $(\Omega ' s)$	Maximum Value $(\Omega ' s)$
$9347 / 100 \mathrm{k}$	7	0.01	111.1111 k
$9347 / 1 \mathrm{M}$	7	0.1	1.111111 M
$9347 / 10 \mathrm{M}$	7	1	11.11111 M
$9347 / 100 \mathrm{M}$	7	10	111.1111 M
$9347 / 1 \mathrm{G}$	7	100	1.111111 G
$9347 / 10 \mathrm{G}$	7	1 k	11.11111 G
$9347 / 100 \mathrm{G}$	7	10 k	111.1111 G
$9347 / 1 \mathrm{~T}$	7	100 k	1.111111 T
$9347 / 10 \mathrm{~T}$	7	1 M	11.11111 T

Model Size and Weight

Model Number	Dimensions	Weight
	($\mathrm{H} \times \mathrm{L} \times \mathrm{W}$)	
9343	$11.8 \times 23.3 \times 10.3 \mathrm{~cm}$	2.7 kg
	$4.6 \times 9 \times 4$ inches	6.1 lbs
9344	$11.8 \times 29 \times 10.3 \mathrm{~cm}$	3.25 kg
	$4.6 \times 11.5 \times 4$ inches	7.2 lbs
9345	$11.8 \times 34.7 \times 10.3 \mathrm{~cm}$	3.9 kg
	$4.6 \times 13.5 \times 4$ inches	8.6 lbs
9346	$11.8 \times 40.5 \times 10.3 \mathrm{~cm}$	4.4 kg
	$4.6 \times 16 \times 4$ inches	9.8 lbs
9347	$11.8 \times 46.1 \times 10.3 \mathrm{~cm}$	5.1 kg
	$4.6 \times 18 \times 4$ inches	11.3 lbs

9340 Series of Precision ResistanceStandards

Series Specifications (continued)

Decade Resistance (Ohms)	Step Resistance (Ohms)	Step Accuracy $(\pm \%)^{2}$	$\begin{gathered} \text { Stability }{ }^{1} \\ (\pm \mathrm{ppm} / \mathrm{yr}) \end{gathered}$	Temperature Coefficient $(\pm \mathrm{ppm} / \mathrm{C})^{1}$	Power Coefficient ${ }^{1}$ ($\pm \mathrm{ppm} / \mathrm{mW}$)	Maximum Power $(W / \text { step })^{1}$	Maximum Current ${ }^{1}$ (amperes)	Maximum Voltage ${ }^{3}$ (volts/step)
0.1	0.01	1	500	5	0.2	0.5	7	0.07
1	0.1	0.1	50	5	0.2	0.5	2	0.2
10	1	0.01	20	5	0.2	0.5	0.7	0.7
100	10	0.01	10	5	0.2	0.5	0.2	2
1K	100	0.01	10	5	0.2	0.5	0.07	7
10K	1K	0.01	10	5	0.2	0.5	0.02	20
100K	10K	0.01	10	5	0.2	0.5	0.007	70
1M	100K	0.01	10	5	0.2	0.5	0.002	200
10M	1M	0.01	10	5	0.2	0.5	0.7 mA	700
100M	10M	0.1	20	20	1	0.1	0.1 mA	1000
1G	100M	0.1	50	20	50	0.01	0.01 mA	1000
10G	1G	1	500	100	1*	0.001	1.5uA	1500
100G	10G	2	1000	250	1*	0.0001	0.15 u A	1500
1 T	100G	5	2000	-250	-85*	N/A	0.015 uA	1500
10T	1 T	6	3000	-2500	-110*	N/A	0.0015 uA	1500

Note 1 - Applicable to all models that have these decade steps incorporated
Note 2 -The Step accuracy is applicable to each Decade step value. For example, the 0.01 Step has an accuracy of 1%. This equates to a $100 \mu \Omega$ error with the dial set to 1 (output $=0.01 \mathrm{Ohms}$). With the dial set to 10 , the output would be 0.1 Ohms and the step accuracy would be $1 \mathrm{~m} \Omega$. Using a 10 ohm 3 -dial decade with steps of $0.01,0.1$ and 1 Ohm and assuming all dials are set to $\times 10$, the output would be 11.1 Ohms . Each Decade Step maximum error would be $\pm 1 \mathrm{~m} \Omega$ (ie $0.1 \Omega @ 1 \%, 1 \Omega @ 0.1 \%$ and $10 \Omega @ 0.01$) and would mathematically add for a total maximum error of $\pm 3 \mathrm{~m} \Omega$'s.
Note 3- maximum voltage is 1500 Volts
Zero Resistance: $\quad<0.0015 \pm 0.0005$ ohm per decade after settling of contacts
Breakdown Voltage:
Number of Decades:

1500 volts to case
$3,4,5,6$ \& 7

A Note about Ordering: To Order, select the model \# (eg 3, 4, 5, 6 or 7 dial) and enter in the Models " X " field, the value of the highest decade resistance value you require. For example a 9343/10 would be a 3 -dial decade box with a $0.01,0.1$ and 1 Ohm Decade (10 Ohms highest output on the 1 Ohm Decade). A 9345/10k would be a 5 dial decade; with decade steps of $0.1,1,10,100$, and 1 k (10k would be highest resistance output on the 1 k decade step). Special Values are available upon request.

ORDERING INFORMATION	
Model \#	Values Available for Each Model
9343/X	10, 100, 1K, 10K, 100K, 1M, 10M, 100M, 1G, 10G, 100G, 1T, or 10T
9344/X	100,1K, 10K, 100K, 1M, 10M, 100M, 1G, 10G, 100G, 1T, or 10T
9345/X	$1 \mathrm{k}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}, 10 \mathrm{M}, 100 \mathrm{M}, 1 \mathrm{G}, 10 \mathrm{G}, 100 \mathrm{G}, 1 \mathrm{~T}$, or 10T
9346/X	10K, 100K, 1M, 10M, 100M, 1G, 10G, 100G, 1T, or 10T
9347/X	100K, 1M, 10M, 100M, 1G, 10G, 100G, 1T, or 10T
/Report	Adds Report of Calibration to the Certificate of Calibration (Certificate is included at no charge)
/TM934x	Technical Manual included at no charge.
Many Precision Leads Sets Are Available - Please Contact Guildline	

Guil d/ ineis distributed by:

Guildline Instruments Limited
21 Gilroy Street, PO Box 99
Smiths Falls, Ontario, Canada K7A 4S9
Phone: (613) 283-3000 Fax: (613) 283-6082 Email: sales@guildline.com
Web: www.guildline.com

